Comparative Case Study

Cambridge HTHV vs. Unit Heaters

Heated Boat Storage

Cambridge HTHV Space Heaters

Operating Costs

Based on 3,103 Heating Degree Days @ 50°

\$0.14/ft² Gas cost @ \$1.00/therm \$0.01/ft² Electric cost @ \$0.08/kWh

\$0.15/ft2 Total cost

Building Specifications

- 54,000 ft² x 37' high
- R-22 Roof / R-15 Walls
- Located near Detroit, MI

Heating System

- (2) Cambridge HTHV Space Heaters
- 1350 MBH total
- 7.000 CFM total
- 4 HP total intermittent
- No Ceiling Fans

Performance

± 5° indoor temperature variation from 50° setpoint

Unit Heaters

Operating Costs

Based on 3,524 Heating Degree Days @ 50°

 $0.29/\text{ft}^2$ Gas cost @ 1.00/therm $0.01/\text{ft}^2$ Electric cost @ 0.08/kWh

\$0.30/ft² Total cost

Building Specifications

- 50,400 ft² x 37' high
- R-22 Roof / R-15 Walls
- · Located near Chicago, IL

Heating System

- (8) Unit Heaters
- 2000 MBH total
- No outside air
- 3 HP total intermittent
- With Ceiling Fans

Performance

± 6° indoor temperature variation from 50° setpoint

Summary

The Cambridge system used **50% less** total energy with less temperature fall off. If the 370,000 ft² facility had installed a Cambridge HTHV system they could have saved approximately **\$8,000/year** operating at \$0.15/ft² vs. \$0.30/ft².

